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This paper presents several analyses which suggest that the bootstrap procedure used
by Freedman and Peters to simulate errors in forecasting futgre Ya1ues of an econo-
metrically modelled process is of limited usefulness for estimating mean square fore-

cast errors.

1. INTRODUCTION

Freedman and Peters (1984) recently applied
a resampling procedure (the "bootstrap") to
obtain estimates of mean square error for the
forecasts from an autoregression with exoge-
neous terms. In this paper, we start with a
theoretical analysis of their suggested
procedure for the case of {not necessarily
stationary) autoregressive models without
exogenous terms and later describe two situ-
ations in which the same conclusions hold in
the presence of exogenous variables.

The theoretical mean square forecast error
from an estimated model is the sum of two
components, the mean square forecast error

of the optimal predictor and the mean square
difference between the optimal forecast and
the estimated model's forecast. This latter
component is of order 1/T, where T is the
Tength of the observed series, and so is
negligible with large samples. Our theoret-
ical analysis in Section 2 shows that the
hootstrap estimate of mean square forecast
error is the sum of the usual (naive) large-
sample estimate of the first component, easi-
1y obtainable without the bootstrap, and a
small-sample estimate of the second. A
gaussian Monte Carlo value of the second com-
ponent is obtained in Section 3 for series

of length 25 from the AR(2) models used in
the study of Ansley and Newbold, along with
the value of the root mean square error
(rmse) of the large-sample estimator of the
m-step~ahead forecast error, form =1, 2

and 5. In these examples, the rmse is always
substantially Targer than the 0{1/T) compo-
nent, supporting the observation of Stine
(1982) that estimates of the second com-
ponent are of 1ittle use in estimating mean
square forecast error unless better estima-
tors of the first component are available.

In the final section, we discuss conditional
forecast mean square errors associated with
predictions of the future of the observed
sample path, and conclude that in this context
as well, the bootstrap's potential contribu-
tion seems Timited.

2. BOOTSTRAP ESTIMATES OF UNCONDITIONAL
MEAN SQUARE FORECAST ERROR

The simple hootstrap procedure of Freedman and
Peters we describe below would appear to be
appropriate when observations yy,...,y7 are

available from a time series obeying a general
p-th order autoregression (p<T) of the form

(2.1) Yt = § + ¢1yt_1 AP ¢th_p
+ep (teptl) ,

where ey (t>p+l) are independent, identically
distributed random variables with mean 0 and

variance a2 which are independent of earlier
y's; that is, for k>0, ey and yy.x are inde-

dependent. It is assumed that the order p is
known and, only for simplicity of notation,

that all of the parameters ¢1,...,¢p and §

are unknown. Define § = (6,@1,...,¢p). For any

m>0 we can use ba¢k substitution in (2.1) to obtain

m-1

(2.2)  yrep = Zj=0 VieTim-j

+ fmre](yTs . 'ayT—p+1) >

where the coefficients wqgl=1), ¥y, ¥p,... satisfy

(2.3) zminﬁg,p>

\p._ = () :-1)’
(=0 Sy -k (49

and where fm[ej(yT,...,yT_p+1) is Tinear in
YTsewes¥Tupsl and § . For example, if p=1, then
by o= 4] and Fol(6,60)1(yy) = 8(1 + ¢ + ...

+ ¢T'I) + ¢Tyt. The two expressions on the
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right hand side of (2.2) are stochastically
independent since e's are independent of
earlier y's. It follows from this that
meSJ(yT,...,yT+p-1) describes the optimal
forecast (the conditional mean of yri, given

Y1s+++,¥T) and that Z

W eT4m-i 15 the result-
ing forecast error. J* J J

This optimal forecast cannot be.gfec1se1y deter-
mined because 8 is unknown. If7H
(6 ¢1,...{$p) is any estimate of 8 obtained
using ¥y,...,¥7, then fm[gj(yy,...,yT_p+1)
is a forecast of yy,, with forecast error
~
(2'4) YT4m = fm[ﬂ](yT’---s.y'T-p-}-l)
m-1

= ZJ«':O ‘pjeTﬂn—j + {fmtg](yT;""yT-p-}-l)

- fm[§j(yr,-x-,yT-p+1)}.
Since the eTim-j» j=0,...,m-1 are independent of
'E, the two terms on the right hand side of
(2.4) are independent. Consequently, using E
to denote expectation, the mean square m-step-
ahead forecagt error when the forecast is

given by fm[_j(yy,...,yy_p+1) satisfies

(2.8)  Elymap = FlBlymseeesy7opar)i?
m-1
=08 Lo ¥ ¢ IR0y pa)

~
- FalBITs ey PP
If T is large, and E is a consistent estimator of
8 (e.g. from least squares, if Eley|® < for

some a>2, see Lai and Wei (1983)), then the
second term on the right in (2.5) can be ig-
nored and the mean square forecast error can
be adequately approximated by

m-1
(2.6) §2(1-p) [ 3%
j=0
" "
where the y's are obtained by using ¢'s in
(2.3), and 32(T-p) is given by
T

82(T-p) = {T-p)-1
(2.7) BTp) = (T

N .
{yt -8 - Qlyt_l ~ 0™ $pyt_p}2-

If T is small, however, then the second term
on the right in (2.5) need not be negligihle.
Also, the gquantity (2.6) may be an inade=

quate approximation to o2 Z w9 For the
i=

situation in which T is small, Freedman and
Peters (1983) propose the following bootstrap
procedure, Define

~~

”~ -~ ’”~
Bt =¥t =6 = ¢1¥pa] meeem SpYiop s
= ptl,...,T

Since we are concerned with the situation in
which only one realization of the serjes y;

is observed, we will now regard the Qt's and

@:as fixed. We will assume that the sample

mean @ of the @'s is 0, as happens, for ex-

ample, when B is chosen to minimize GZ(T-p)
in (2.7). (Otherwise, use B¢ - in place

of 8 below.) Then if we define eg, top ,

by successive independent draws with replace-
ment from {6p+1,...,3T}, we obtain a

series of identically distributed random var-
iables with mean 0 and variance ¥2(T-p)
whose common distribution is the empirical
distribution of {ep+1,...,eT} Now we
define the so-called psuedo-data series, yg,
by means of Y: = ¥, 1<t<p and
(2.8) i = T $1y€_1 toaea 3py2—p
tep (tp).

The e*'s are independent of earlier y*'s. Let
gf denote the value corresponding to E‘when
y{,...,y? are used in place of the orig-
inal values yq,...,yT: For example, if @_was obh-
tained by least squares, we choose 8% so that

T

* * * * * K
thpﬂ {}’t -& - ¢1Yt_1 T el - ¢pyt—p

12

.

is minimized.

We have now created an analogue of the orig-
inal situation, but one in which we can use a
(psuedo~-) random number generator to s1mu]at9
draws with replacement from {ep+1,...,eT} and
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so obtain as many (psuedo-) independent real-
izations of y{,...y?+m as we like. With

these realizations, finally, we can épproxio
mate the distribution of the forecast error

k3 * * *
process yTim = fml8 J(yTse e oyTope1)

to any desired degree of accuracy. To the ex-
tent that this resembles the distribution of

YT+m = fmCEW(YT,---,yT+p_1), we thereby gain

information about the error process in which
we are actually interested.

For example, following Freedman and Peters
(1983), given realizations y*(n), .., y*(n),
1 T+m
n=1l,...,N, we can approximate
* *
(2.9) ElyTen ~
* * *
fm[:g_ ](yTs-")yT_p+1)}2
by means of
N
N-1 {y*(n) .
zn=1 yT+m

W 0, p2

(In (2.9) and below, we use £* to denote ex-
pectation with respect to the distribution of

the series e:.)

The question is, what is the relationship
between the quantity (2.9) and ElyTem -

fmﬂg](yT,...,yT_p+1)}2 ? To obtain a par-

tial answer, we note that, by analogy with
(2.5), the quantity (2.9) is equal to

A m-1 a
(2.10) 52(T-p)] . B2«
J:l J

* A * *

E {fm[_(?_:](.yT"'°:.yT_p+l) -

fm[z*](.y;:"':y'?-p+l)}2 .
Thus, this bootstrap procedure inflates the

naive estimate of mean square prediction er-
ror, (2.6}, by an amount

(2.11) E*{fm[§](y$,...,y¥_p+1) -
* *
f:‘mr.e_. }(yTs‘°°7y¥~p+1)}2

which is clearly a proxy for the mean square

deviation of fmﬂgT(yT,---,yT-p+1) from

Fl8 YT e v ey Top1)s

(2.12) ECPRBI(yTs e v oy Topa1) -
fol8yTaee T 12

appearing as the second component on the right
hand side of (2.5). Since the quantity (2.6)
is known independently of the bootstrap pro-
cedure, we conclude that an estimate of (2.11)
is, in fact, the only contribution made by this
procedure. Further, to estimate (2.11) it is

clear that psuedo-future data y?+1,...,y¥+m

are not required, but only realizations of
yf,...,y?. Thus, in place of Freedman and

Peters' procedure to estimate the mean square
m-step-ahead forecast error, it seems appro-
priate to only consider quantities

N
-1 81y () *(n) y .
(2.13) N zn=1 SACAN ,-.e,yT_p+1)

*(n)ye,*(n) *(n) 1y 2
fmrf_ -](_Y ’.’."YT ng)+1»

using these to estimate (2.12), the component
of mean square forecast error due to the use
of ® instead of 8 in the forecast function,

Somewhat analogous observations can be made
for the model selection procedure proposed in
Freedman and Peters (1983): Suppose two dif-
ferent autoregressive models, of orders p(A)
and p(B), are fit to the observed data
Y1seees¥T, resulting in estimated parameters 8a

and 85, residual populations {eé(A)+l""’
eé} and { eg(3)+l,...,e%}, and psuedo-
data series y@* and yg* as above. Freedman

and Peters suggest that each model he fit to,
and then used to forecast, the psuedo-data
from the other model, and that bootstrap es-
timates of the mean square forecast error be
calculated. The model having the smaller
estimated mean square forecast error is to
be preferred. Thus, using an obvious nota-
tional scheme, the idealized quantities to

be compared are

EAM(yA* _ fBroAry A A 12
{yT+m ”‘[—B ](yT y )

T-p(B)
and
B*,  B* Ar B* B* B* 2
E - f[e seoas
W ™ Ml 00T
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By the argument used to derive (2.5}, these
idealized quantities are equal, respectively,
to

-1
(2.14) oR(T-p(a) I (o7 +

EATLRRLOAT AT AT ) -

T-p(A)
BrgA*y A* A* 2
LEN RN
and
m-1
(2.15) BTp(0) [ (hE e

EB*reBro 1(yB*,...,yB* -
m[_g](YT yT-p(B))

ArgB*-, B¥ B* 2
fole>] seens } .
Sy W )

Since the leading expressions in (2.14) and
'2.15) can be calculated independently of

:he bootstrap, we see, as before, that the
pootstrap's only contribution is to compare
forecasts and that psuedo-data at times later
than T are not needed for this.

A1l of the arguments given above also apply to
the case of vector autoregressions, and thus
also to the case of autoregressions with exo-
geneous variables, provided that endogeneous
and exogenous variables are simultaneocusly
forecasted from a combined vector autoregres-
sion. They also apply if all needed values

of the exogenous variables are assumed to be
nonrandom and known, as in Freedman and

Peters (1984)

3. THE SIZE OF (2.12) IN SOME EXAMPLES

Again using an obvious notation, let us re-
Arite (2.5) as

{3.1) Gé,T = c% + EQ%,T

The analogous formula for the bootstrap esti-
mate (see (2.10)) can be written

*
(3.2)  oplp = 62(T-p) + EMap?y

ag
5’7, the practical signifi-
2

cance of having an estimate E*A??m of Eﬁm’y de~

For estimating o

2 and

pends upon the size of ESF,T relative to of

m

to the root mean square estimation error of the

large-sample estimate G%(T-p) df 0%,
rmse(83(T-p)) = (E(62(T-p) - 6D)21/2 |

In Table (3.1) below, we present Monte Carlo

estimates of the ratios Eﬁ%,T/o% and

(3.3) EAZ /rmse(82(T-p))

for the observation length T=25 for some gaus-
sian AR(2) processes

(3.4) Yt = § + d1ye.1 * doyp-1 * ey
utilized in the study of Ansley and Newbold
(1981). We note that these quantities are
relevant for the estimation of oy 1 as well,
since, for example,

om,T = Opll + (Ezg,T/U%)}l/z ,

which is well approximated by

ol + %.(Eﬁg,r/cg)}

if (E82 1/02)2/8 is negligible (Taylor
polynomial approximation). For each pair of
coefficients ¢1, ¢p in the Table, we
estimated the quantities Eﬁm’r and

rmse(é%(T—p)) as the mean of sample estimates

obtained from 1000 stationary pseudo-Gaussian
series satisfying (3.4) with & = 0, using least
squares to estimate §, ¢y and ¢5. (The IMSL

pseudo-Gaussian generator GGNML was utilized.)
The tabled results suggest that estimation of

Eﬁ%’T is of little consequence when

%g(T-p) is used to estimate c%.
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Table 3.1 Values of Eﬁ%’T/o% and (3.3) for

M=1, 2 and 5, for selected Gaus-
sian AR(2) processes,with T=25,

41 b9 m EAZ 1 /0t (33)
.40 -.15 1 .01 .02
2 .01 .01
5 .00 .01
.80 - .65 1 .01 .05
2 .04 .04
5 .02 .02
.80 -.16 1 .03 .04
2 .02 .03
5 .02 .04

We have not included results for those of
Ansley and Newbold's AR(2) models whose
characteristic polynomials have a root in
the annulus 1.0<|z|<1.24, With T=25,
simutations for such models produced Targe
numbers of explosive series (the esti-
mated characteristic polynomials had a root
in |z]<1.0).

4, CONDITIONAL MEAN SQUARE FORECAST ERROR

In the preceding sections, we investigated un-
conditional mean square forecast error. How-
ever, it is the error associated with predict-
ing a future point on the observed sample

ath (realization) which usually 1s most of
interest.,

4A. Mean Square Error Formulas

Since, by (2.1), the value of YT+m
depends on the data yj,...,yT only through

the last p observations, it is easy to check
that we can simply reinterpret the expectation
operator £ in (2.5) as designating expectation
conditional upon YTs¥T=1sees¥To(p+l) and

thereby obtain the fundamental decomposition
of the mean square forecast error conditional
upon the observed sample path. The
YTs¥T-1seses¥T=(p+1) in the second term on

the right in (2.5) are now held constant,

with the result that this second term simpli-
fies into a linear expression in the higher
order moments of 8 - 8. The mean-zero first
order case is illustrative: If

Yt = bypal toeyg ($#0) (4.1)
with ey, t>1, i.i.d. having mean 0 and vari-
ance 02, and with ey independent of Y¢.x when-

aver k>0, then fale1(y) = ¢Myr. From the
the Taylor polynomial expansion of f[$1(yT)
about 3 = ¢, we have
Fal1(y7) = fulo1lyT) =
yr 10 G ™G - 0, (4.2)
j:l m,J
where Cy = m(m-1)...(m-j+1)/j!.

Taking the mean square of (4.2) conditional
on yt, we obtain

ECF I8 10yy) - Fuled(yy)2 =

2 m
YT Zj,k=1 Cm,jcm,

(HIMIKEG - gy Itk

" (4.3)
To estimate (4.3) via the bootstrap, we re-
place y? in (2.11) by y7 (ideally gener-
ating the pseudo-data in such a way that y? =
YT, but see 4B. below). By analogy with
(4.3), we then have

EXUFale " I(yr) - £ 870y 2 =

m S AL
YE L O O BET IR - 3k

(4.4)

The efficacy of the bootstrap procedure is
usually related to the extent to which the

distribution of gf- § resembles that of §'- 8 and
to how insensitive this latter distributTon Ts
to the true parameter value 8, However, for

our problem, the situation iTlustrated by (4.3)
and (4.4) obviously holds generally: the ex-

pected mean square of meQJ(YT,...,yT_p+1)
- fm[ﬂj(yT,...,yT_b+1) conditional on
YTseoes¥Taptl depends on the true value

of 8 as well as on the distribution of §'— 0,
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suggesting that the quality of the bootstrap
approximatjon will be influenced by the ac-
curacy of § as an estimate of 8.

48. Bootstrapping Conditional Sample Paths

[t would seem like an attractive idea, when, as
in this section, statistics associated with

the distribution of Yi conditional on yy,...,
YT-p+] are being approximated, to generate
pseudodata y: for the hootstrap in such a

way that y: = y¢ holds for T-p+1<t<T,

For example, it would be appealing to estimate

*®

¢ in (4.1) from sample paths passing through
YT

To illustrate a first approach to accomplishing
this, suppose we have bootstrapped residuals

e;+l,...,e? from an estimate § of ¢ in (4.1).
To generate Y; satisfying

Y; = $y€~1 + ez , 2<t<T
with y? = ¥1, we could obviously set Y1 = y?
and recursively define

* ALl * ALl *
ve =07yt - v lefh

1t<T-1 (4.5)
In this case, however, Y: is neither inde-
pendent of nor even uncorrelated with e€+1
for 1<t<T-1. Thus the bootstrapped
data fail to have a basic property of the
original data, and the consequences of this
for the estimation of $ from yf,...,y?
are an unresolved issue. Furthermore, (4.5)
is numerically unstable when [$|<1.
When the series Yt is stationary, a second ap-
proach, which avoids the difficulties just en-
countered, would seem to recommend itself. To
illustrate with the first order case again,
if y¢ satisfying (4.1) is stationary, then it

is easy to verify that the random variables at
defined by

ay =Yg = Y41 (4.6)

are uncorrelated with one another, satisfy
Ea% = Ee%, and each ap s uncorrelated
with yeejy for all j»l.  (This equation is

sometimes called the time-reversed representa-
tion of the process yt.) We can therefore use,

as an estimate of ¢, the value § minimizing

T-1
t=1

I

(yy - $yt+l)2’ then define 5t =Yy -

;Yt+1' t=1,...,T-1, draw randomly with re-
placement from this set of residuals {after
centering about their sample mean) to obtain
af,...,a?_l and, finally, define y? =y |

and

Vi = ¥ea * ot (4.7)

for t = T-1,...,1, thus generating a pseudo-
data sample path containing yy. This procedure

is appropriate only if the ay defined by

(4.6) are i.i.d., since this is a property
%

of the a¢.

We will now show, however, that the white
noise noise series ay can be independent only

if the cumulants of Yt (or, equivalently,
those of er) are those of a Gaussian series,
i.e., are 0 for orders higher than 2. Indeed,
Tet k. denote the r-th order cumulant
cum(et,...,et) of ey for some r>2 {(assumed

to exist). Since, from (4.6),
’ = ® ¢Ja :
Yt Xj=0 t+]j

ft is easy to see that the ay's are independ-
ent if and only if ay is independent of Yt+j

for each j»1. In this case, the r-th or-
der cumulants cumf{ag, Yt+j’---’Yt+j) will be

0; see Brillinger (1975, p. 19) for the funda-
mental properties of cumulants. For j=1, in
particular, since we can write

= @ +4) ® ¢je_.
Y+l t+1 Ej=0 t-]
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and

ag =Yt - W4l = - deps] ¥
2 [--] .
1- Je sy
(1 -4 2j=0 ey _;

we are then led to

0

i

cum(ags YelseeesYt+l) =

-6 cum{epyy,een,@pq1)

+

2y, r=1 57 jr
(1 -4 Zi=0 #I"cum(ey 5,0 0 eq_3)

R CCLL IS VIS NI S

Since 0<|#|<1, it follows that k. =0, as as-
serted.. If the distribution of ey is deter-

mined by its moments and if all moments ex-
ist, then e, and hence also Yt» is therefore

Gaussian. For Gaussian time series, however,
pseudo-Gaussian Monte Carlo simulations seem
like a more natural device to use to generate
sample paths than the bootstrap.

We conclude from the preceding discussion
that generally satisfactory methods are
lacking for obtaining hootstrap sample paths
through the final observations YTeptlssees¥Te

Remark. The calculation used ahove, showing
that assuming one-step forward and backward
prediction are i.i.d, is tantamount to assum-
ing that the observations are Gaussian, can
be extended to stationary autoregressive
processes of arbitrary order. A much more
general assertion is made in Result 2.2 of
Donoho (1981), namely, more that a strictly
stationary non-Gaussian time series with
finite second moments can have (ignoring re-
scalings) at most one invertible representa-
tion as a moving average of an i.i.d. white
noise process. Some important details are
missing in the proof which is given there,
however.

CONCLUSION

Our results suggest that the estimates of
mean square forecast error which result from
the bootstrap procedure proposed by Freedman
and Peters are not significantly more re-
reliable than the Targe sample estimates,
which are jll-behaved, in small samples.

This does not exclude the possibility

that other methods of bootstrapping

these statistics could prove useful.
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